TWR-77379 ECS SS12943

Reusable Solid Rocket Motor STS-109 Flight Readiness Review/CoFR

Motor Set RSRM-83

14 February 2002

Presented by Terry Boardman

THIOKOL PROPULSION

P.O. Box 707, Brigham City, UT 84302-0707 (435) 863-3511

Agenda

Flight Readiness Review/CoFR

- 1.0 Previous Flight Assessment—STS-108
- 2.0 Certification Status—No Constraints
- 3.0 Changes Since Previous Flight—None
- 4.0 Configuration Inspection
 - 4.1 As-Built Versus As-Designed, Hardware, and Closeout Photo Review Status—No Issues
 - 4.2 Hardware Changeouts Since ET/SRB Mate Review—None
- 5.0 SMRB Nonconformances—None
- 6.0 Technical Issues/Special Topics
- 7.0 Readiness Assessment
- Backup LCC and Contingency Temperatures for STS-109

Previous Flight Assessment—STS-108

1.0-1

Disassembly Evaluation Summary—Status of Disassembly Activity

KSC Operations		LH RSRM	RH RSRM	Remarks
Initial LH/RH SRB viewing	*	Complete	Complete	
SRB/RSRM walkaround assessment	*	Complete	Complete	
Demate/evaluate aft exit cone (AEC)	*	Complete	Complete	
Remove/evaluate S&A and OPTs	*	Complete	Complete	
Remove/evaluate nozzle	*	Complete	Complete	No nozzle throat pocketing
Remove/evaluate stiffener rings/stubs		Complete	Complete	
Remove/evaluate igniter	*	Complete	Complete	
Demate/evaluate field joints/evaluate insulation	*	Complete	Complete	
Utah Operations				
Disassemble/evaluate nozzle (joint No. 4 and 5)	*	Complete	Complete	
Disassemble/evaluate nozzle (joint No. 2 and 3)	*	Complete	Complete	
Disassemble/evaluate S&A	*	Complete	Complete	
Washout nozzle phenolics		Complete	Complete	
Washout nozzle AEC phenolics		14 Feb 2002	14 Feb 2002	
Measure/evaluate aft dome insulation		22 Feb 2002	22 Feb 2002	

^{*} RSRM Project committed to complete prior to next launch

No constraints to STS-109 flight

Technical Issues/Special Topics

6.0 - 1

O-ring Resiliency Reassessment

Observation

 Recent O-ring resiliency test data indicates previous test/extrapolated resiliency may not be conservative

Concern

 Challenge to baseline design certification to contract end item (CEI) 2X tracking requirement for O-ring seals

Background

- Field joint O-rings are required to track twice (2X) the maximum expected joint displacement (MED) at maximum expected operating pressure (MEOP)
 - MED following 1986 SRM redesign was established at 0.009 in. measured at land between primary and secondary O-ring grooves
 - Data obtained during redesign resiliency testing showed a minimum 16.5-percent O-ring compression (squeeze) was necessary to provide 2X tracking for 0.009-in. gap opening in 0.600-second ignition transient at 75°F

Technical Issues/Special Topics

6.0 - 2

O-ring Resiliency Reassessment (Cont)

Background (Cont)

- Minimum O-ring squeeze was adjusted to 15.1 percent in 1993 to account for worst-case seal surface refurbishment. Certification baseline MED was adjusted to 0.0084 in. to ensure 2X tracking
 - RSRM project allowed use of data extrapolated from 16.5- to 15.1-percent squeeze to show 2X tracking
 - Current field joint launch commit criteria (LCC) temperature of 80°F is based on this extrapolation
- Recent experiments were conducted to verify validity of extrapolated data below
 16.5 percent by obtaining tracking data at 10- and 14-percent squeeze levels
 - Data showed that the maximum gap opening that could be tracked at 2X with 15.1-percent squeeze was 0.0081 in. in 0.600 second—0.0003 in. less than the certification baseline MED of 0.0084 in.
 - Worst-on-worst case conservatisms for joint motion analysis show generic tracking factor falls from 2X to 1.94X

Technical Issues/Special Topics

6.0-3

O-ring Resiliency Reassessment (Cont)

Background (Cont)

Technical Issues/Special Topics

6.0 - 4

O-ring Resiliency Reassessment (Cont)

Discussion

- Worst-case field joint O-ring squeeze on STS-109 as-built motor set is
 16.5 percent—flight hardware meets current generic certification requirements
 - Joint heaters are operated with 97°F setpoint ensuring O-ring temperatures greater than 90°F—well above 80°F LCC
 - If heaters fail, contingency temperatures based on as-built configuration and most recent resiliency data ensure 2X tracking requirement is met
- The following changes are necessary to address generic certification issue:
 - Effective STS-109
 - Waiver RWW0549 (one flight effectivity) to cover generic design not meeting CEI 2X tracking requirement at 80°F—waiver approved
 - Effective STS-110 and subsequent
 - LCC change to increase joint sensor temperature minimum to 86°F to account for new resiliency test data and ensure generic design certification to CEI 2X tracking requirement including MRB conditions
 - Generic certification paperwork update to document new resiliency test data and new generic field joint LCC temperature

Flight Rationale

- As-built configuration for STS-109 verifies O-ring seals meet 2X tracking requirement
- STS-109 is safe to fly

THIOKOL PROPULSION

STS-109 Readiness Assessment

Pending satisfactory completion of normal operations flow (per OMRSD), the RSRM hardware is ready to support flight for mission STS-109

14 February 2002

/s/ T. A. Boardman

T. A. Boardman RSRM Deputy & Chief Engineer Thiokol

/s/ H. L. Reed

H. L. Reed
Director
RSRM Operations & Flight Support
Thiokol

/s/ S. F. Cash

S. F. Cash Chief Engineer, RSRM Project NASA, MSFC

/s/ M. U. Rudolphi

M. U. Rudolphi Manager RSRM Project Office NASA, MSFC

Current Flight Predictions

Backup-1

LCC and Contingency Temperatures for STS-109

Heater Location	<u>LCC</u>	Minimum Allowable Sensor Temperature*		
		<u>LH</u>	<u>RH</u>	
lgniter	74 ° F	72°F	72°F	
Forward Field Joint	80°F	73 °F	69°F	
Center Field Joint	80°F	70°F	68°F	
Aft Field Joint	80°F	64°F	71°F	
Nozzle-to-Case Joint	75°F	65°F	63°F	

*LCC contingency temperature in the event of heater failure

Note: Calculation includes all standard repair conditions including evaluation of Technical Issue (Section 6.0)

